1. An, P., Holstein, K., d’Anjou, B., Eggen, B., & Bakker, S. (2020). The TA framework: Designing real-time teaching augmentation for K-12 classrooms. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–17). https://doi.org/10.1145/3313831.3376277
2. Arastoopour Irgens, G., Shaffer, D. W., Swiecki, Z., Ruis, A. R., & Chesler, N. C. (2016). Teaching and assessing engineering design thinking with virtual internships and epistemic network analysis. International Journal of Engineering Education, 32(2), 1492–1501.
3. Arguel, A., Pachman, M., & Lockyer, L. (2018). Identifying epistemic emotions from activity analytics in interactive digital learning environments. In J. M. Lodge, J. C. Horvath, & L. Corrin (Eds.), Learning analytics in the classroom (pp. 56–68). Routledge.
4. Borchers, C., Rosenberg, J. M., & Gibbons, B. (2021). To scale or not to scale: Comparing popular sentiment analysis dictionaries on educational twitter data. Proceedings of the 14th International Conference on Educational Data Mining, 619–624. https://educationaldatamining.org/EDM2021/EDM2021Proceedings.pdf
5. Cai, Z., Siebert-Evenstone, A., Eagan, B., & Williamson Shaffer, D. (2021). Using topic modeling for code discovery in large scale text data. ICQE 2020 Advances in Quantitative Ethnography. https://doi.org/10.1007/978-3-030-67788-6_2