Countrywide climate features during recorded climate-related disasters

Author:

Tschumi ElisabethORCID,Zscheischler Jakob

Abstract

AbstractClimate-related disasters cause substantial disruptions to human societies. With climate change, many extreme weather and climate events are expected to become more severe and more frequent. The International Disaster Database (EM-DAT) records climate-related disasters associated with observed impacts such as affected people and economic damage on a country basis. Although disasters are classified into different meteorological categories, they are usually not linked to observed climate anomalies. Here, we investigate countrywide climate features associated with disasters that have occurred between 1950 and 2015 and have been classified as droughts, floods, heat waves, and cold waves using superposed epoch analysis. We find that disasters classified as heat waves are associated with significant countrywide increases in annual mean temperature of on average 0.13 C and a significant decrease in annual precipitation of 3.2%. Drought disasters show positive temperature anomalies of 0.08 C and a 4.8 % precipitation decrease. Disasters classified as droughts and heat waves are thus associated with significant annual countrywide anomalies in both temperature and precipitation. During years of flood disasters, precipitation is increased by 2.8 %. Cold wave disasters show no significant signal for either temperature or precipitation. We further find that climate anomalies tend to be larger in smaller countries, an expected behavior when computing countrywide averages. In addition, our results suggest that extreme weather disasters in developed countries are typically associated with larger climate anomalies compared to developing countries. This effect could be due to different levels of vulnerability, as a climate anomaly needs to be larger in a developed country to cause a societal disruption. Our analysis provides a first link between recorded climate-related disasters and observed climate data, which is an important step towards linking climate and impact communities and ultimately better constraining future disaster risk.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3