A framework for deep constrained clustering
Author:
Funder
Google
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Information Systems
Link
http://link.springer.com/content/pdf/10.1007/s10618-020-00734-4.pdf
Reference40 articles.
1. Aljalbout E, Golkov V, Siddiqui Y, Strobel M, Cremers D (2018) Clustering with deep learning: taxonomy and new methods. arXiv preprint arXiv:1801.07648
2. Bade K, Nürnberger A (2008) Creating a cluster hierarchy under constraints of a partially known hierarchy. In: Proceedings of the 2008 SIAM international conference on data mining. SIAM, pp 13–24
3. Basu S, Bilenko M, Mooney RJ (2004) A probabilistic framework for semi-supervised clustering. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 59–68
4. Basu S, Davidson I, Wagstaff K (2008) Constrained clustering: advances in algorithms, theory, and applications. CRC Press, Cambridge
5. Bilenko M, Basu S, Mooney RJ (2004) Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the twenty-first international conference on machine learning. ACM, p 11
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Constrained Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using hyperparameter optimization;Knowledge-Based Systems;2024-11
2. Synergies between machine learning and reasoning - An introduction by the Kay R. Amel group;International Journal of Approximate Reasoning;2024-08
3. A review on declarative approaches for constrained clustering;International Journal of Approximate Reasoning;2024-08
4. 1DCAE-TSSAMC: Two-Stage Multi-Dimensional Spatial Features Based Multi-View Deep Clustering for Time Series Data;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2024-06
5. Graph-Based Semi-Supervised Deep Image Clustering With Adaptive Adjacency Matrix;IEEE Transactions on Neural Networks and Learning Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3