1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.
2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. Advances in Neural Information Processing Systems, 31, 9505–9515.
3. Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A. B., Alzakari, N., Abou Elwafa, A., & Kurdi, H. (2021). Impact of dataset size on classification performance: an empirical evaluation in the medical domain. Applied Sciences, 11(2), 796.
4. Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G. K., Rogelj, J., Rojas, M., Sillma, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., & Zickfeld, K. (2021). Climate change 2021: The physical science basis. Contribution of working group 14 I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Technical Summary.
5. Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2018). Synthesizing robust adversarial examples. In International conference on machine learning (pp. 284–293).