Predicting Employee Absence from Historical Absence Profiles with Machine Learning

Author:

Zupančič Peter12ORCID,Panov Panče3ORCID

Affiliation:

1. Faculty of Information Studies, 8000 Novo mesto, Slovenia

2. 1A Internet, d.o.o., 8270 Krško, Slovenia

3. Jožef Stefan Institute, 1000 Ljubljana, Slovenia

Abstract

In today’s dynamic business world, organizations are increasingly relying on innovative technologies to improve the efficiency and effectiveness of their human resource (HR) management. Our study uses historical time and attendance data collected with the MojeUre time and attendance system to predict employee absenteeism, including sick and vacation leave, using machine learning methods. We integrate employee demographic data and the absence profiles on timesheets showing daily attendance patterns as fundamental elements for our analysis. We also convert the absence data into a feature-based format suitable for the machine learning methods used. Our primary goal in this paper is to evaluate how well we can predict sick leave and vacation leave over short- and long-term intervals using tree-based machine learning methods based on the predictive clustering paradigm. This paper compares the effectiveness of these methods in different learning settings and discusses their impact on improving HR decision-making processes.

Funder

company 1A Internet, d.o.o.

Slovenian Research and Innovation Agency

Publisher

MDPI AG

Reference35 articles.

1. Predictive Analytics in HR Management;Malisetty;Indian J. Public Health Res. Dev.,2017

2. Human Resource Predictive Analytics (HRPA) for HR management in organizations;Mishra;Int. J. Sci. Technol. Res.,2016

3. Forecasting: The key to successful human resource management;Sutanto;J. Manaj. Dan Kewirausahaan,2000

4. HR analytics: A modern tool in HR for predictive decision making;Mohammed;J. Manag.,2019

5. Preventive maintenance scheduling of a multi-skilled human resource-constrained project’s portfolio;Bocewicz;Eng. Appl. Artif. Intell.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3