Autonomous search of an airborne release in urban environments using informed tree planning

Author:

Rhodes Callum,Liu CunjiaORCID,Westoby Paul,Chen Wen-Hua

Abstract

AbstractThe use of autonomous vehicles for source localisation is a key enabling tool for disaster response teams to safely and efficiently deal with chemical emergencies. Whilst much work has been performed on source localisation using autonomous systems, most previous works have assumed an open environment or employed simplistic obstacle avoidance, separate from the estimation procedure. In this paper, we explore the coupling of the path planning task for both source term estimation and obstacle avoidance in an adaptive framework. The proposed system intelligently produces potential gas sampling locations that will reliably inform the estimation engine by not sampling in the wake of buildings as frequently. Then a tree search is performed to generate paths toward the estimated source location that traverse around any obstacles and still allow for exploration of potentially superior sampling locations.The proposed informed tree planning algorithm is then tested against the standard Entrotaxis and Entrotaxis-Jump techniques in a series of high fidelity simulations. The proposed system is found to reduce source estimation error far more efficiently than its competitors in a feature rich environment, whilst also exhibiting vastly more consistent and robust results.

Funder

Engineering and Physical Sciences Research Council

Defence Science and Technology Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual-stage planner for autonomous radioactive source localization in unknown environments;Robotics and Autonomous Systems;2024-02

2. Detection and Estimation of Gas Sources With Arbitrary Locations Based on Poisson's Equation;IEEE Open Journal of Signal Processing;2024

3. Distributed Superresolution Gas Source Localization Based on Poisson Equation;2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP);2023-12-10

4. Review of UAV-based autonomous search algorithms for hazardous sources;SCIENTIA SINICA Informationis;2022-09-01

5. Gas source localization and mapping with mobile robots: A review;Journal of Field Robotics;2022-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3