Hybrid solder joints: the effect of nanosized ZrO2 particles on morphology of as-reflowed and thermally aged Sn–3.5Ag solder joints

Author:

Wodak Irina,Yakymovych AndriyORCID,Svec PeterORCID,Orovcik LubomirORCID,Khatibi GoltaORCID

Abstract

AbstractThe main number of current researches has been focused on the microstructure and mechanical properties of the Sn-based Sn–Ag–Cu-based solders, while various kinds of nanosized particles have been added. The synthesis and handling of ceramic nanosized powder are much easier than of metal nanoparticles. In addition, metal nanoparticles solved in solder joints during the soldering process or by thermal aging could behave as an alloying element similar to bulk metal additions, while ceramic nanoparticles retain their chemically inactive behavior in various thermal, thermo-mechanical, and electrical constraints. In some cases, the solved metal nanosized inclusions could increase the growth kinetics of the present intermetallic phases or even create new phases, which leads to more complexity in the predictions and simulations of chemical processes in the solder joints. Based on the assertions mentioned above, ceramic nanosized particles are industrially more favorable as reinforcing inclusions. On the other hand, there is no direct comparison in the literature between Sn-based Sn–Ag–Cu and Sn–Ag solder joints with similar ceramic nanoinclusions based on microstructural features and mechanical properties. In the present research, the Cu/flux + NPs/SAC/flux + NPs/Cu solder joints were produced with a nominal amount of 0.2 wt%, 0.5 wt%, and 1.0 wt% nanosized ZrO2 powder. The solder joints prepared via the above-described method are called in the literature as hybrid solder joints. The microstructure of the as-reflowed and thermally aged samples has been studied, especially at the interface solder/substrate. It has been shown that the minor additions of ZrO2 NPs lead to a decrease in the thickness of the Cu6Sn5 interfacial layer in the as-reflowed solder joints and a reduction in the growth kinetics of this layer, while the Cu3Sn interfacial IMC layer remains practically unaffected. Similar investigations were performed in our previous study but for both the hybrid and nanocomposite Sn–3.0Ag–0.5Cu solder joints. A comparative analysis of the impact of the ZrO2 nanoinclusions on the hybrid solder joints using Sn–3.5Ag and Sn–3.0Ag–0.5Cu has been performed.

Funder

Austrian Science Fund

Slovenská Akadémia Vied

Slovak Research and Development Agency

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3