Nanoscale optical parametric amplification through super-nonlinearity induction

Author:

Aşırım Özüm EmreORCID,Kuzuoğlu Mustafa

Abstract

AbstractOptical parametric amplification (OPA) is a nonlinear process through which a low-power input wave is amplified by extracting energy from an interaction medium that is energized by a high-intensity pump wave. For a significant amplification of an input wave, a sufficiently long interaction medium is required, which is usually on the order of a few centimeters. Therefore, in the small scale, OPA is considered unfeasible, and this prevents it from being employed in micro and nanoscale devices. There have been recent studies that proposed microscale OPA through the use of micro-resonators. However, there is currently no study that has suggested high-gain nanoscale OPA, which could be quite useful for implementing nanoscale optical devices. This study aims to show that nanoscale OPA is feasible through the concurrent maximization of the pump wave induced electric energy density and the polarization density (nonlinear coupling strength) within the interaction medium, which enables a very high amount of energy to be transferred to the input wave that is sufficient to amplify the input wave with a gain factor that is comparable to those provided by centimeter scale nonlinear crystals. The computational results of our OPA model match with the experimental ones in the context of sum-harmonic generation, which is the wave-mixing process that gives rise to OPA, with an accuracy of 97.6%. The study aims to make room for further investigation of nanoscale OPA through adaptive optics and/or nonlinear programming algorithms for the enhancement of the process.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3