Intelligent and behavioral-based detection of malware in IoT spectrum sensors

Author:

Celdrán Alberto HuertasORCID,Sánchez Pedro Miguel SánchezORCID,Castillo Miguel Azorín,Bovet GérômeORCID,Pérez Gregorio MartínezORCID,Stiller BurkhardORCID

Abstract

AbstractThe number of Cyber-Physical Systems (CPS) available in industrial environments is growing mainly due to the evolution of the Internet-of-Things (IoT) paradigm. In such a context, radio frequency spectrum sensing in industrial scenarios is one of the most interesting applications of CPS due to the scarcity of the spectrum. Despite the benefits of operational platforms, IoT spectrum sensors are vulnerable to heterogeneous malware. The usage of behavioral fingerprinting and machine learning has shown merit in detecting cyberattacks. Still, there exist challenges in terms of (i) designing, deploying, and evaluating ML-based fingerprinting solutions able to detect malware attacks affecting real IoT spectrum sensors, (ii) analyzing the suitability of kernel events to create stable and precise fingerprints of spectrum sensors, and (iii) detecting recent malware samples affecting real IoT spectrum sensors of crowdsensing platforms. Thus, this work presents a detection framework that applies device behavioral fingerprinting and machine learning to detect anomalies and classify different botnets, rootkits, backdoors, ransomware and cryptojackers affecting real IoT spectrum sensors. Kernel events from CPU, memory, network, file system, scheduler, drivers, and random number generation have been analyzed, selected, and monitored to create device behavioral fingerprints. During testing, an IoT spectrum sensor of the ElectroSense platform has been infected with ten recent malware samples (two botnets, three rootkits, three backdoors, one ransomware, and one cryptojacker) to measure the detection performance of the framework in two different network configurations. Both supervised and semi-supervised approaches provided promising results when detecting and classifying malicious behaviors from the eight previous malware and seven normal behaviors. In particular, the framework obtained 0.88–0.90 true positive rate when detecting the previous malicious behaviors as unseen or zero-day attacks and 0.94–0.96 F1-score when classifying them.

Funder

Armasuisse

University of Zurich

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality,Information Systems,Software

Reference53 articles.

1. Lueth, K.L.: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections/-surpassing-non-iot-for-the-first-time/ (2020). Accessed 29 Sept 2021

2. Boulogeorgos, A., Karagiannidis, G.: Low-cost cognitive radios against spectrum scarcity. IEEE Techn. Comm. Cognit. Netw. Newslett. 3, 30–34 (2017)

3. Wang, X., Wang, J., Xu, Y., Chen, J., Jia, L., Liu, X., Yang, Y.: Dynamic spectrum anti-jamming communications: challenges and opportunities. IEEE Commun. Mag. 58(2), 79–85 (2020)

4. Rajendran, S., Calvo-Palomino, R., Fuchs, M., Van den Bergh, B., Cordobés, H., Giustiniano, D., Pollin, S., Lenders, V.: Electrosense: open and big spectrum data. IEEE Commun. Mag. 56(1), 210–217 (2018)

5. Electrosense. Collaborative spectrum monitoring. https://electrosense.org/

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3