Detection of Malicious Threats Exploiting Clock-Gating Hardware Using Machine Learning

Author:

Kose Nuri Alperen1ORCID,Jinad Razaq1,Rasheed Amar1,Shashidhar Narasimha1,Baza Mohamed2ORCID,Alshahrani Hani3ORCID

Affiliation:

1. Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA

2. Department of Computer Science, College of Charleston, Charleston, SC 29424, USA

3. Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

Abstract

Embedded system technologies are increasingly being incorporated into manufacturing, smart grid, industrial control systems, and transportation systems. However, the vast majority of today’s embedded platforms lack the support of built-in security features which makes such systems highly vulnerable to a wide range of cyber-attacks. Specifically, they are vulnerable to malware injection code that targets the power distribution system of an ARM Cortex-M-based microcontroller chipset (ARM, Cambridge, UK). Through hardware exploitation of the clock-gating distribution system, an attacker is capable of disabling/activating various subsystems on the chip, compromising the reliability of the system during normal operation. This paper proposes the development of an Intrusion Detection System (IDS) capable of detecting clock-gating malware deployed on ARM Cortex-M-based embedded systems. To enhance the robustness and effectiveness of our approach, we fully implemented, tested, and compared six IDSs, each employing different methodologies. These include IDSs based on K-Nearest Classifier, Random Forest, Logistic Regression, Decision Tree, Naive Bayes, and Stochastic Gradient Descent. Each of these IDSs was designed to identify and categorize various variants of clock-gating malware deployed on the system. We have analyzed the performance of these IDSs in terms of detection accuracy against various types of clock-gating malware injection code. Power consumption data collected from the chipset during normal operation and malware code injection attacks were used for models’ training and validation. Our simulation results showed that the proposed IDSs, particularly those based on K-Nearest Classifier and Logistic Regression, were capable of achieving high detection rates, with some reaching a detection rate of 0.99. These results underscore the effectiveness of our IDSs in protecting ARM Cortex-M-based embedded systems against clock-gating malware.

Funder

Najran University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3