Fast but approximate homomorphic k-means based on masking technique

Author:

Rovida LorenzoORCID

Abstract

AbstractNowadays, computing on encrypted data seems to be more practical than a few years ago, thanks to the emergence of new Homomorphic Encryption schemes. In this paper, an algorithm based on Homomorphic Encryption for Arithmetic of Approximate Numbers (Cheon et al., in: Takagi, Peyrin (eds) Advances in cryptology—ASIACRYPT 2017, Springer, Cham, pp 409–437, 2017) (HEAAN, or also CKKS) scheme, that is able to perform a secure k-means algorithm which processes encrypted data, has been studied and presented. The performance of the classifier running on encrypted data has been evaluated using a standard k-means algorithm that works on plain data as a supervised structure, since the results are obtained by approximated computations. The main point of this paper is to take existent theoretical techniques (for example approximations of $$\text {sgn}(x)$$ sgn ( x ) ), to use them and to observe if they are valid in practical applications. The output of the algorithm is a set of k encrypted masks that can be applied to the original dataset in order to obtain different clusters. The setting is a standard client–server one. The workload is heavily server-centric, as the client only has to execute a light masking algorithm at the end of each iteration, which, excluding the decryption, is faster than a plain k-means iteration; the main disadvantage concerns the accuracy of the results. Experiments show that the algorithm can be executed fairly quickly: the execution time of the training phase is on the order of seconds, while classification is on the order of tenths of a second.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FHE-Based Secure Image Processing Framework with Integrated Key Management System;The Fifth Workshop on Intelligent Cross-Data Analysis and Retrieval;2024-06-10

2. Homomorphic Encryption;Advances to Homomorphic and Searchable Encryption;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3