Practical Implementation of Privacy Preserving Clustering Methods Using a Partially Homomorphic Encryption Algorithm

Author:

Catak Ferhat OzgurORCID,Aydin IsmailORCID,Elezaj Ogerta,Yildirim-Yayilgan SuleORCID

Abstract

The protection and processing of sensitive data in big data systems are common problems as the increase in data size increases the need for high processing power. Protection of the sensitive data on a system that contains multiple connections with different privacy policies, also brings the need to use proper cryptographic key exchange methods for each party, as extra work. Homomorphic encryption methods can perform similar arithmetic operations on encrypted data in the same way as a plain format of the data. Thus, these methods provide data privacy, as data are processed in the encrypted domain, without the need for a plain form and this allows outsourcing of the computations to cloud systems. This also brings simplicity on key exchange sessions for all sides. In this paper, we propose novel privacy preserving clustering methods, alongside homomorphic encryption schemes that can run on a common high performance computation platform, such as a cloud system. As a result, the parties of this system will not need to possess high processing power because the most power demanding tasks would be done on any cloud system provider. Our system offers a privacy preserving distance matrix calculation for several clustering algorithms. Considering both encrypted and plain forms of the same data for different key and data lengths, our privacy preserving training method’s performance results are obtained for four different data clustering algorithms, while considering six different evaluation metrics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Texture Analysis of Breast US Images Using Morphological Transforms, Hausdorff Dimension and Bagging Ensemble Method;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

2. Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment;KSII Transactions on Internet and Information Systems;2024-05-31

3. Privacy-Preserving of Digital 6G IoT Based Cyber Phycical System in Medical Big-Data Application Using Homomorphic Encryption;Wireless Personal Communications;2024-05-15

4. Development of a Secure Framework for Electronic Voting in Nigeria using Paillier Cryptosystem;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

5. Smart home system using blockchain technology in green lighting environment in rural areas;Heliyon;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3