1. Agarwal, D., Broder, A. Z., Chakrabarti, D., Diklic, D., Josifovski, V., & Sayyadian, M. (2007). Estimating rates of rare events at multiple resolutions. In Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 16–25). New York, NY, USA: ACM, KDD ’07.
2. Agarwal, D., Gabrilovich, E., Hall, R., Josifovski, V., & Khanna, R. (2009). Translating relevance scores to probabilities for contextual advertising. In Proceeding of the 18th ACM conference on Information and knowledge management (pp. 1899–1902). New York, NY, USA: ACM, CIKM ’09.
3. Agarwal, D., Agrawal, R., Khanna, R., & Kota, N. (2010a). Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 213–222). New York, NY, USA: ACM, KDD ’10.
4. Agarwal, D., Chen, D., Lin, L. j., Shanmugasundaram, J., & Vee, E. (2010b). Forecasting high-dimensional data. In Proceedings of the 2010 international ACM SIGMOD conference on management of data (pp. 1003–1012). New York, NY, USA: ACM, SIGMOD ’10.
5. Aggarwal, G., Goel, A., & Motwani, R. (2006). Truthful auctions for pricing search keywords. In Proceedings of the 7th ACM conference on electronic commerce (pp. 1–7). New York, NY, USA: ACM, EC ’06.