Real-Time Filtering Non-Intentional Bid Request on Demand-Side Platform

Author:

Nguyen Thi-Thanh-AnORCID,Ha Duy-An,Zhu Wen-Yuan,Yuan Shyan-MingORCID

Abstract

While real-time bidding brings a huge profit for online businesses, it also becomes a potential target for malicious purposes. In real-time bidding, the bid request traffic could be classified into two kinds: intentional and non-intentional. Intentional bid requests come from ordinal web users while non-intentional bid requests come from abnormal web users. From the perspective of a demand-side platform (DSP), the budget of advertisers should be used as effectively as possible by limiting non-intentional traffic. Therefore, it is essential to classify and predict these two kinds of bid request traffic. In this research, we propose a real-time filtering bid requests (RFBR) model to predict whether an incoming bid request is intentional or non-intentional from the DSP’s viewpoint. Our model is built on three stages. In the first stage, we analyzed all potential attributes in the bid request scheme and figured out the relations between abnormal behaviors and their attributes; in the second stage, a classification model was built to classify normal and abnormal audiences by the extracted features and self-defined thresholds; in the third stage, a RFBR model was built to classify intentional and non-intentional bid requests. The experimental result shows that our system can effectively classify incoming bid requests.

Funder

the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3