Boundary conditions and vacuum fluctuations in $${\mathrm {AdS}}_4$$

Author:

Barroso Vitor S.ORCID,Pitelli J. P. M.

Abstract

AbstractInitial conditions given on a spacelike, static slice of a non-globally hyperbolic spacetime may not define the fates of classical and quantum fields uniquely. Such lack of global hyperbolicity is a well-known property of the anti-de Sitter solution and led many authors to question how is it possible to develop a quantum field theory on this spacetime. Wald and Ishibashi took a step towards the healing of that causal issue when considering the propagation of scalar fields on AdS. They proposed a systematic procedure to obtain a physically consistent dynamical evolution. Their prescription relies on determining the self-adjoint extensions of the spatial component of the differential wave operator. Such a requirement leads to the imposition of a specific set of boundary conditions at infinity. We employ their scheme in the particular case of the four-dimensional AdS spacetime and compute the expectation values of the field squared and the energy-momentum tensor, which will then bear the effects of those boundary conditions. We are not aware of any laws of nature constraining us to prescribe the same boundary conditions to all modes of the wave equation. Thus, we formulate a physical setup in which one of those modes satisfy a Robin boundary condition, while all others satisfy the Dirichlet condition. Due to our unusual settings, the resulting contributions to the fluctuations of the expectation values will not respect AdS invariance. As a consequence, a back-reaction procedure would yield a non-maximally symmetric spacetime. Furthermore, we verify the violation of weak energy condition as a direct consequence of our prescription for dynamics.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3