Renormalized stress-energy tensor on global anti-de Sitter space-time with Robin boundary conditions

Author:

Morley Thomas,Namasivayam Sivakumar,Winstanley Elizabeth

Abstract

AbstractWe study the renormalized stress-energy tensor (RSET) for a massless, conformally coupled scalar field on global anti-de Sitter space-time in four dimensions. Robin (mixed) boundary conditions are applied to the scalar field. We compute both the vacuum and thermal expectation values of the RSET. The vacuum RSET is a multiple of the space-time metric when either Dirichlet or Neumann boundary conditions are applied. Imposing Robin boundary conditions breaks the maximal symmetry of the vacuum state and results in an RSET whose components with mixed indices have their maximum (or maximum magnitude) at the space-time origin. The value of this maximum depends on the boundary conditions. We find similar behaviour for thermal states. As the temperature decreases, thermal expectation values of the RSET approach those for vacuum states and their values depend strongly on the boundary conditions. As the temperature increases, the values of the RSET components tend to profiles which are the same for all boundary conditions. We also find, for both vacuum and thermal states, that the RSET on the space-time boundary is independent of the boundary conditions and determined entirely by the trace anomaly.

Funder

Science and Technology Facilities Council

Horizon 2020

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3