Tailoring molecular island shapes: influence of microscopic interaction on mesostructure

Author:

Aeschlimann Simon,Lyu Lu,Stadtmüller Benjamin,Aeschlimann Martin,Kühnle Angelika

Abstract

AbstractControlling the structure formation of molecules on surfaces is fundamental for creating molecular nanostructures with tailored properties and functionalities and relies on tuning the subtle balance between intermolecular and molecule-surface interactions. So far, however, reliable rules of design are largely lacking, preventing the controlled fabrication of self-assembled functional structures on surfaces. In addition, while so far many studies focused on varying the molecular building blocks, the impact of systematically adjusting the underlying substrate has been less frequently addressed. Here, we elucidate the potential of tailoring the mesoscopic island shape by tuning the interactions at the molecular level. As a model system, we have selected the molecule dimolybdenum tetraacetate on three prototypical surfaces, Cu(111), Au(111) and CaF2(111). While providing the same hexagonal geometry, compared to Cu(111), the lattice constants of Au(111) and CaF2(111) differ by a factor of 1.1 and 1.5, respectively. Our high-resolution scanning probe microscopy images reveal molecular-level information on the resulting islands and elucidate the molecular-level design principles for the observed mesoscopic island shapes. Our study demonstrates the capability to tailor the mesoscopic island shape by exclusively tuning the substrate lattice constant, in spite of the very different electronic structure of the substrates involved. This work provides insights for developing general design strategies for controlling molecular mesostructures on surfaces.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3