Magnetic Energy Landscape of Dimolybdenum Tetraacetate on a Bulk Insulator Surface

Author:

Cococcioni Matteo,Floris AndreaORCID

Abstract

The magnetic states and the magnetic anisotropy barrier of a transition metal molecular complex, dimolybdenum tetraacetate, are investigated via density functional theory (DFT). Calculations are performed in the gas phase and on a calcite (10.4) bulk insulating surface, using the Generalized-Gradient Approximation (GGA)-PBE and the Hubbard-corrected DFT + U and DFT + U + V functionals. The molecular complex (denoted MoMo) contains two central metallic molybdenum atoms, embedded in a square cage of acetate groups. Recently, MoMo was observed to form locally regular networks of immobile molecules on calcite (10.4), at room conditions. As this is the first example of a metal-coordinated molecule strongly anchored to an insulator surface at room temperature, we explore here its magnetic properties with the aim to understand whether the system could be assigned features of a single molecule magnet (SMM) and could represent the basis to realize stable magnetic networks on insulators. After an introductory review on SMMs, we show that, while the uncorrected GGA-PBE functional stabilizes MoMo in a nonmagnetic state, the DFT + U and DFT + U + V approaches stabilize an antiferromagnetic ground state and several meta-stable ferromagnetic and ferrimagnetic states. Importantly, the energy landscape of magnetic states remains almost unaltered on the insulating surface. Finally, via a noncollinear magnetic formalism and a newly introduced algorithm, we calculate the magnetic anisotropy barrier, whose value indicates the stability of the molecule’s magnetic moment.

Funder

ARCHER Service

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3