Author:
Choi Chungseok,Cai Jin,Lee Changsoo,Lee Hyuck Mo,Xu Mingjie,Huang Yu
Abstract
AbstractDeveloping highly efficient electrochemical catalysts for carbon dioxide reduction reaction (CO2RR) provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human activities. Copper (Cu) is known for its efficiency in CO2RR towards value-added hydrocarbons; hence its unique structural properties along with various Cu alloys have been extensively explored in the past decade. Here, we demonstrate a two-step approach to achieve intimate atomic Cu-Ag interfaces on the surface of Cu nanowires, which show greatly improved CO2RR selectivity towards methane (CH4). The specially designed Cu-Ag interfaces showed an impressive maximum Faradaic efficiency (FE) of 72% towards CH4 production at −1.17 V (vs. reversible hydrogen electrode (RHE)).
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献