Author:
Jiang Jianxia,Qin Leiqiang,Halim Joseph,Persson Per O. Å.,Hou Lintao,Rosen Johanna
Abstract
AbstractElectrochromic (EC) materials that change color with voltage have been widely studied for use in dynamic windows. However, colorless-to-colorful switching with high contrast ratio is generically unattainable, especially for colorless-to-black electrochromic materials with an ultrahigh contrast ratio over the entire visible region. In this work, we developed Nb1.33C MXene-based dynamic windows with colorless-to-black switching of up to 75% reversible change in transmittance from 300 to 1,500 nm. By exploring the electrochromic effects of different electrolytes through in situ optical changes and electrochemical quartz crystal microbalance (EQCM), it is found that electrochromic behavior is greatly influenced by the extent of reversible Li+ insertion/deinsertion between the two-dimensional Nb1.33C MXene nanosheets. In addition, a colorless-to-black EC device based on Nb1.33C with an overall integrated contrast ratio over 80% was successfully constructed by a solution-processable spin coating method. This work enables a simple route to fabricate MXene-based high-performance electrochromic smart windows, which is important for further expanding the application of MXenes to optoelectronic and photonic applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献