Author:
Ding Er-Xiong,Hussain Aqeel,Ahmad Saeed,Zhang Qiang,Liao Yongping,Jiang Hua,Kauppinen Esko I.
Abstract
AbstractSingle-walled carbon nanotube (SWCNT) transparent conducting films (TCFs) are attracting increasing attention due to their exceptional optoelectronic properties. Toluene is a proposed carbon source for SWCNT synthesis, but the growth parameters of SWCNTs and their TCF optoelectronic performance (i.e., sheet resistance versus transmittance) have been insufficiently evaluated. Here, we have for the first time reported a systematic study of the fabrication of high-performance SWCNT TCFs using toluene alone as the carbon source. The mechanisms behind each observed phenomenon were elucidated using optical and microscopy techniques. By optimizing the growth parameters, high yields of SWCNT TCFs exhibiting a considerably low sheet resistance of 57 Ω/sq at 90% transmittance were obtained. This competitive optoelectronic performance is mainly attributable to long SWCNT bundles (mean length is 41.4 μm) in the film. Additionally, a chirality map determined by electron diffraction displays a bimodal distribution of chiral angles divided at 15°, which is close to both armchair and zigzag edges. Our study paved the way towards scaled-up production of SWCNTs for the fabrication of high-performance TCFs for industrial applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献