Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks

Author:

Yue Ying12,Zhang Di12,Wang Pengyu12,Xia Xiaogang12,Wu Xin12ORCID,Zhang Yuejuan12,Mei Jie12,Li Shaoqing12,Li Mingming12,Wang Yanchun13,Zhang Xiao1234,Wei Xiaojun1234,Liu Huaping1234,Zhou Weiya1234ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. School of Physical Sciences and College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China

3. Beijing Key Laboratory for Advanced Functional Materials and Structure Research Beijing 100190 China

4. Songshan Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractLarge‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet‐driven CNNR (FD‐CNNR) technique, is presented to overcome this intractable contradiction. The FD‐CNNR technique introduces an interaction between single‐walled carbon nanotube (SWNT) and Cu─‐O. Based on the unique FD‐CNNR mechanism, large‐area flexible reorganized carbon nanofilms (RNC‐TCFs) are designed and fabricated with A3‐size and even meter‐length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G‐RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC‐TCFs is achieved. The G‐RSWNT TCF shows sheet resistance as low as 69 Ω sq−1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC‐TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4‐size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD‐CNNR technique can be extended to large‐area or even large‐scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3