Encapsulated trajectory tracking control for autonomous vehicles
-
Published:2022-07-25
Issue:3-4
Volume:7
Page:295-306
-
ISSN:2365-5127
-
Container-title:Automotive and Engine Technology
-
language:en
-
Short-container-title:Automot. Engine Technol.
Author:
Homolla TobiasORCID, Winner Hermann
Abstract
AbstractThe motion control of autonomous vehicles with a modular, service-oriented system architecture poses new challenges, as trajectory-planning and -execution are independent software functions. In this paper, requirements for an encapsulated trajectory tracking control are derived and it’s shown that key differences to conventional vehicles with an integrated system architecture exist, requiring additional attention during controller design. A novel, encapsulated control architecture is presented that incorporates multiple extensions and support functions, fulfilling the derived requirements. It allows the application within the modular architecture without loss of functionality or performance. The controller considers vehicle stability and enables the yaw motion as an independent degree of freedom. The concept is applied and validated within the vehicles of the UNICARagil research project, that feature the previously described system architecture to increase flexibility of application by dynamically interconnecting services based on the current use-case.
Funder
Bundesministerium für Bildung und Forschung Technische Universität Darmstadt
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Rupp, A., Stolz, M.: Survey on control schemes for automated driving on highways. In: Watzenig, D., Horn, M. (eds.) Automated Driving, pp. 43–69. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-31895-0_4 2. Klamann, B., Lippert, M., Amersbach, C., Winner, H.: Defining pass-/fail-criteria for particular tests of automated driving functions. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 169–174. IEEE, Auckland (2019). https://doi.org/10.1109/ITSC.2019.8917483 3. Woopen, T., Lampe, B., Böddeker, T., Eckstein, L., Kampmann, A., Alrifaee, B., Kowalewski, S., Moormann, D., Stolte, T., Jatzkowski, I., Maurer, M., Möstl, M., Ernst, R., Ackermann, S., Amersbach, C., Leinen, S., Winner, H., Püllen, D., Katzenbeisser, S., Becker, M., Stiller, C., Furmans, K., Bengler, K., Diermeyer, F., Lienkamp, M., Keilhoff, D., Reuss, H.-C., Buchholz, M., Dietmayer, K., Lategahn, H., Siepenkötter, N., Elbs, M., v. Hinüber, E., Dupuis, M., Hecker, C.: UNICARagil—disruptive modular architectures for agile, automated vehicle concepts. In: 27th Aachen Colloquium, Aachen (2018) 4. Martens, T., Pouansi Majiade, L., Li, M., Henkel, N., Eckstein, L., Wielgos, S., Schlupek, M.: UNICARagil dynamics module. In: 29th Aachen Colloquium Sustainable Mobility, Aachen (2020) 5. Mokhtarian, A., Alrifaee, B., Kampmann, A.: The dynamic service-oriented software architecture for the UNICARagil Project. In: 29. Aachen Colloquium Sustainable Mobility 2020, Aachen. https://doi.org/10.18154/RWTH-2020-11256
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|