Resilience-Driven Road Network Retrofit Optimization Subject to Tropical Cyclones Induced Roadside Tree Blowdown

Author:

Hu Fuyu,Yang Saini,Thompson Russell G.

Abstract

AbstractThis article focuses on decision making for retrofit investment of road networks in order to alleviate severe consequences of roadside tree blowdown during tropical cyclones. The consequences include both the physical damage associated with roadside trees and the functional degradation associated with road networks. A trilevel, two-stage, and multiobjective stochastic mathematical model was developed to dispatch limited resources to retrofit the roadside trees of a road network. In the model, a new metric was designed to evaluate the performance of a road network; resilience was considered from robustness and recovery efficiency of a road network. The proposed model is at least a nondeterministic polynomial-time hardness (NP-hard) problem, which is unlikely to be solved by a polynomial time algorithm. Pareto-optimal solutions for this problem can be obtained by a proposed trilevel algorithm. The random forest method was employed to transform the trilevel algorithm into a single-level algorithm in order to decrease the computation burden. Roadside tree retrofit of a provincial highway network on Hainan Island, China was selected as a case area because it suffers severely from tropical cyclones every year, where there is an urgency to upgrade roadside trees against tropical cyclones. We found that roadside tree retrofit investment significantly alleviates the expected economic losses of roadside tree blowdown, at the same time that it promotes robustness and expected recovery efficiency of the road network.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3