Data-Driven Earthquake Multi-impact Modeling: A Comparison of Models

Author:

Patten Hamish,Anderson Loake Max,Steinsaltz David

Abstract

AbstractIn this study, a broad range of supervised machine learning and parametric statistical, geospatial, and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derived geolocated building damage data for earthquakes, via regression- and classification-based models, respectively. For the aggregated observational data, models were ranked via predictive performance of mortality, population displacement, building damage, and building destruction for 375 observations across 161 earthquakes in 61 countries. For the satellite image-derived data, models were ranked via classification performance (damaged/unaffected) of 369,813 geolocated buildings for 26 earthquakes in 15 countries. Grouped k-fold, 3-repeat cross validation was used to ensure out-of-sample predictive performance. Feature importance of several variables used as proxies for vulnerability to disasters indicates covariate utility. The 2023 Türkiye–Syria earthquake event was used to explore model limitations for extreme events. However, applying the AdaBoost model on the 27,032 held-out buildings of the 2023 Türkiye–Syria earthquake event, predictions had an AUC of 0.93. Therefore, without any geospatial, building-specific, or direct satellite image information, this model accurately classified building damage, with significantly improved performance over satellite image trained models found in the literature.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3