Vulnerability Assessment Method for Immovable Cultural Relics Based on Artificial Neural Networks—An Example of a Heavy Rainfall Event in Henan Province

Author:

Xu Can,Gong Adu,Liang Long,Song Xiaoke,Wang Yi

Abstract

AbstractCultural relic conservation capability is an important issue in cultural relic conservation research, and it is critical to decrease the vulnerability of immovable cultural relics to rainfall hazards. Commonly used vulnerability assessment methods are subjective, are mostly applied to regional conditions, and cannot accurately assess the vulnerability of cultural relics. In addition, it is impossible to predict the future vulnerability of cultural relics. Therefore, this study proposed a machine learning-based vulnerability assessment method that not only can assess cultural relics individually but also predict the vulnerability of cultural relics under different rainfall hazard intensities. An extreme rainfall event in Henan Province in 2021 was selected as an example, with a survey report on the damage to cultural relics as a database. The results imply that the back propagation (BP) neural network-based method of assessing the vulnerability of immovable cultural relics is reliable, with an accuracy rate higher than 92%. Based on this model to predict the vulnerability of Zhengzhou City’s cultural relics, the vulnerability levels of cultural relics under different recurrence periods of heavy rainfall were obtained. Among them, the vulnerability of ancient sites is higher than those of other cultural relic types. The assessment model used in this study is suitable for predicting the vulnerability of immovable cultural relics to heavy rainfall hazards and can provide a technical means for cultural relic conservation studies.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

Reference33 articles.

1. Chen, J.Y., K.W. Bi, and R.Z. Wen. 2009. A group vulnerability analysis method for rapid post-earthquake assessment. Earthquake Defense Technology 4(2): 174–181 (in Chinese).

2. Chen, J.F., Q. Li, M.H. Deng, and J.P. Pei. 2020. Urban flood vulnerability assessment based on random forest and variable fuzzy set. Yangtze River Basin Resources and Environment 29(11): 2551–2562 (in Chinese).

3. Goyal, D., A.K. Haritash, and S.K. Singh. 2021. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. Journal of Environmental Management 296: 11316

4. Heo, B.Y., and W.H. Heo. 2017. Economic analysis for collapse hazard areas. Applied Sciences 7(7): Article 693.

5. Hu, S.R. 1992. Introduction to neural networks. Beijing: National University of Defense Technology Press (in Chinese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3