Spatial Vulnerability Assessment for Mountain Cities Based on the GA-BP Neural Network: A Case Study in Linzhou, Henan, China

Author:

Duan Yutong1ORCID,Yu Miao1ORCID,Sun Weiyang1,Zhang Shiyang1,Li Yunyuan1ORCID

Affiliation:

1. School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Abstract

Mountain cities with complex topographies have always been highly vulnerable areas to global environmental change, prone to geological hazards, climate change, and human activities. Exploring and analyzing the vulnerability of coupling systems in mountain cities is highly important for improving regional resilience and promoting sustainable regional development. Therefore, a comprehensive framework for assessing the spatial vulnerability of mountain cities is proposed. A vulnerability assessment index system is constructed using three functional systems, ecological protection, agricultural production, and urban construction. Subsequently, the BP neural network and the genetic algorithm (GA) are combined to establish a vulnerability assessment model, and geographically weighted regression (GWR) is introduced to analyze the spatial influence of one-dimensional systems on the coupling system. Linzhou, a typical mountain city at the boundary between China’s second- and third-step terrains, was selected as a case study to demonstrate the feasibility of the framework. The results showed that the vulnerability of the ecological protection system was highly aggregated in the east–central region, that of the agricultural production system was high in the west, and that of the urban construction system was low in the central region and high in the northwestern region. The coupling system vulnerability was characterized by multispatial distribution. The complex topography and geomorphology and the resulting natural hazards are the underlying causes of the vulnerability results. The impact of ecological and urban systems on the coupling system vulnerability is more prominent. The proposed framework can serve as a reference for vulnerability assessments of other similar mountain cities with stepped topographies to support the formulation of sustainable development strategies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3