Abstract
AbstractEnergy harvesting represents one of the recent challenging subjects related to vibration and control. The scale of energy harvesters and storage can involve a wide power range, and the scale of some milliwatt is the elective field of piezoelectric applications. This paper investigates the power frontiers of the piezoelectric-based harvesters applied to automotive units. The analysis, supported by experimental data, aims at estimating the upper bound of the specific power of this technology for powering small devices on board cars. Passive optimally tuned piezoelectric harvester and semi-active controlled ones are compared, based on a new control strategy named VFC-Variational Feedback Control, recently developed by the authors. This new technique makes it possible to increase the total energy storage drained from car vibrations. However, the real advantage for their use relies on a sharp balance between the harvested power and the costs for the additional hardware mass transport. Numerical simulations of circuitry and experimental vibration data provides references to assess the energy convenience in installing this type of devices on board.
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献