Vibration energy harvesting for cars: semi-active piezo controllers

Author:

Pepe G.ORCID,Doria A.,Roveri N.,Carcaterra A.

Abstract

AbstractEnergy harvesting represents one of the recent challenging subjects related to vibration and control. The scale of energy harvesters and storage can involve a wide power range, and the scale of some milliwatt is the elective field of piezoelectric applications. This paper investigates the power frontiers of the piezoelectric-based harvesters applied to automotive units. The analysis, supported by experimental data, aims at estimating the upper bound of the specific power of this technology for powering small devices on board cars. Passive optimally tuned piezoelectric harvester and semi-active controlled ones are compared, based on a new control strategy named VFC-Variational Feedback Control, recently developed by the authors. This new technique makes it possible to increase the total energy storage drained from car vibrations. However, the real advantage for their use relies on a sharp balance between the harvested power and the costs for the additional hardware mass transport. Numerical simulations of circuitry and experimental vibration data provides references to assess the energy convenience in installing this type of devices on board.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3