Metabolic profiling of patients with different idiopathic inflammatory myopathy subtypes reveals potential biomarkers in plasma

Author:

Zhao Qianqian,Hu Qiu,Meng Shuhui,Zhang Qinguo,Wang Tingting,Liu Cuilian,Liu Dongzhou,Jiang Zhenyou,Hong Xiaoping

Abstract

AbstractIdiopathic inflammatory myopathy (IIM) are heterogeneous autoimmune diseases that primarily affect the proximal muscles. IIM subtypes include dermatomyositis (DM), polymyositis (PM), and anti-synthetase syndrome (ASS). Metabolic disturbances may cause irreversible structural damage to muscle fibers in patients with IIM. However, the metabolite profile of patients with different IIM subtypes remains elusive. To investigate metabolic alterations and identify patients with different IIM subtypes, we comprehensively profiled plasma metabolomics of 46 DM, 13 PM, 12 ASS patients, and 30 healthy controls (HCs) using UHPLC-Q Exactive HF mass spectrometer. Multiple statistical analyses and random forest were used to discover differential metabolites and potential biomarkers. We found that tryptophan metabolism, phenylalanine and tyrosine metabolism, fatty acid biosynthesis, beta-oxidation of very long chain fatty acids, alpha-linolenic acid and linoleic acid metabolism, steroidogenesis, bile acid biosynthesis, purine metabolism, and caffeine metabolism are all enriched in the DM, PM, and ASS groups. We also found that different subtypes of IIM have their unique metabolic pathways. We constructed three models (five metabolites) to identify DM, PM, ASS from HC in the discovery and validation sets. Five to seven metabolites can distinguish DM from PM, DM from ASS, and PM from ASS. A panel of seven metabolites can identify anti-melanoma differentiation-associated gene 5 positive (MDA5 +) DM with high accuracy in the discovery and validation sets. Our results provide potential biomarkers for diagnosing different subtypes of IIM and a better understanding of the underlying mechanisms of IIM.

Funder

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3