Value of radiomics-based automatic grading of muscle edema in polymyositis/dermatomyositis based on MRI fat-suppressed T2-weighted images

Author:

Zhang Yumei1ORCID,Zou Yuefen1,Tan Wenfeng2,Lv Chengyin2

Affiliation:

1. Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China

2. Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China

Abstract

Background The precise and objective assessment of thigh muscle edema is pivotal in diagnosing and monitoring the treatment of dermatomyositis (DM) and polymyositis (PM). Purpose Radiomic features are extracted from fat-suppressed (FS) T2-weighted (T2W) magnetic resonance imaging (MRI) of thigh muscles to enable automatic grading of muscle edema in cases of polymyositis and dermatomyositis. Material and Methods A total of 241 MR images were analyzed and classified into five levels using the Stramare criteria. The correlation between muscle edema grading and T2-mapping values was assessed using Spearman’s correlation. The dataset was divided into a 7:3 ratio of training (168 samples) and testing (73 samples). Thigh muscle boundaries in FS T2W images were manually delineated with 3D-Slicer. Radiomics features were extracted using Python 3.7, applying Z-score normalization, Pearson correlation analysis, and recursive feature elimination for reduction. A Naive Bayes classifier was trained, and diagnostic performance was evaluated using receiver operating characteristic (ROC) curves and comparing sensitivity and specificity with senior doctors. Results A total of 1198 radiomics parameters were extracted and reduced to 18 features for Naive Bayes modeling. In the testing set, the model achieved an area under the ROC curve of 0.97, sensitivity of 0.85, specificity of 0.98, and accuracy of 0.91. The Naive Bayes classifier demonstrated grading performance comparable to senior doctors. A significant correlation (r = 0.82, P <0.05) was observed between Stramare edema grading and T2-mapping values. Conclusion The Naive Bayes model, utilizing radiomics features extracted from thigh FS T2W images, accurately assesses the severity of muscle edema in cases of PM/DM.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3