Estimating excess heat from exhaust gases: why corrosion matters

Author:

Aydemir AliORCID,Fritz Markus

Abstract

AbstractIndustry accounts for about 30% of the final energy demand in Germany. Of this, 75% is used to provide heat, but a considerable proportion of the heat is unused. A recent bottom-up estimate shows that up to 13% of the fuel consumption of industry is lost as excess heat in exhaust gases. However, this estimate only quantifies a theoretical potential, as it does not consider the technical aspects of usability. In this paper, we also estimate the excess heat potentials of industry using a bottom-up method. Compared to previous estimates, however, we go one step further by including the corrosiveness of the exhaust gases and thus an important aspect of the technical usability of the excess heat contained in them. We use the emission declarations for about 300 production sites in Baden-Württemberg as a data basis for our calculations. For these sites, we calculate a theoretical excess heat potential of 2.2 TWh, which corresponds to 12% of the fuel consumption at these sites. We then analyse how much this theoretical potential is reduced if we assume that the energy content of sulphur-containing exhaust gases is only used up to the sulphuric acid dew point in order to prevent corrosion. Our results show that 40% of the analysed excess heat potential is corrosive, which reduces the usable potential to 1.3 TWh or 7% of fuel consumption. In principle, it is possible to use the energy of the excess heat from sulphur-containing exhaust gases even below the dew point, but this is likely to involve higher costs. This therefore represents an obstacle to the full utilisation of the available excess heat. Our analysis shows that considering corrosion is important when estimating industrial excess heat potentials.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Environmental Science (miscellaneous),Ecology

Reference34 articles.

1. Aydemir A (2018) Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration in Deutschland. Universitäts- und Landesbibliothek Darmstadt, Darmstadt

2. Aydemir A, Doderer H, Hoppe F, Braungardt S (2019) Abwärmenutzung in Unternehmen. Studie für das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-5495991.pdf. Accessed 11 Dec 2019

3. Bergmeier M (2003) The history of waste energy recovery in Germany since 1920. Energy 28:1359–1374. https://doi.org/10.1016/S0360-5442(03)00114-2

4. Bianchi G, Panayiotou GP, Aresti L, Kalogirou SA, Florides GA, Tsamos K, Tassou SA, Christodoulides P (2019) Estimating the waste heat recovery in the European Union Industry. Energy Ecol Environ 4:211–221. https://doi.org/10.1007/s40974-019-00132-7

5. Bloemer S, Thomassen P, Hespeler S, Grytsch G, Zopff C, Richter S, Huber B, Ochse S, Pehnt M, Hering D, Götz C, Jäger S (2019) EnEff:Wärme - netzgebundene Nutzung industrieller Abwärme (NENIA) - Kombinierte räumlich-zeitliche Modellierung von Wärmebedarf und Abwärmeangebot in Deutschland: Schlussbericht im Auftrag des Bundesministeriums für Wirtschaft und Energie: Berichtszeitraum: 01.08.2015–31.07.2018. https://edocs.tib.eu/files/e01fb19/1667658271.pdf. Accessed 11 Dec 2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3