Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?

Author:

Manz Pia,Kermeli Katerina,Persson UrbanORCID,Neuwirth Marius,Fleiter Tobias,Crijns-Graus WinaORCID

Abstract

Energy-intensive industries across the EU-28 release unused heat into the environment. This excess heat can be utilized for district heating systems. However, this is the exception today, and the potential contribution to the decarbonization of district heating is not well quantified. An estimation of excess heat, based on industrial processes, and spatial matching to district heating areas is necessary. We present a georeferenced industrial database with annual production and excess heat potentials at different temperature levels matched with current and possible district heating areas. Our results show a total potential of 960 PJ/a (267 TWh/a) of excess heat when the exhaust gases are cooled down to 25 °C, with 47% of the 1.608 studied industrial sites inside or within a 10 km distance of district heating areas. The calculated potentials reveal that currently 230 PJ/a (64 TWh/a) of excess heat is available for district heating areas, about 17% of today’s demand of buildings for district heating. In the future, widespread and low-temperature district heating areas increase the available excess heat to 258 PJ/a (72 TWh/a) at 55 °C or 679 PJ/a (189 TWh/a) at 25 °C. We show that industrial excess heat can substantially contribute to decarbonize district heating, however, the major share of heat will need to be supplied by renewables.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference70 articles.

1. Complete Energy Balances (Table nrg_bal_c)https://ec.europa.eu/eurostat/data/database

2. A bottom-up estimation of the heating and cooling demand in European industry

3. Energy Prices and Costs in Europe,2019

4. Industrial Energy Efficiency and Competitiveness;Eichhammer,2011

5. What About Heat Integration? Quantifying Energy Saving Potentials for Germany;Aydemir,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3