Author:
Cannarsa Piermarco,Cheng Wei,Fathi Albert
Abstract
AbstractIf $U:[0,+\infty [\times M$
U
:
[
0
,
+
∞
[
×
M
is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$ \partial _{t}U+ H(x,\partial _{x}U)=0, $$
∂
t
U
+
H
(
x
,
∂
x
U
)
=
0
,
where $M$
M
is a not necessarily compact manifold, and $H$
H
is a Tonelli Hamiltonian, we prove the set $\Sigma (U)$
Σ
(
U
)
, of points in $]0,+\infty [\times M$
]
0
,
+
∞
[
×
M
where $U$
U
is not differentiable, is locally contractible. Moreover, we study the homotopy type of $\Sigma (U)$
Σ
(
U
)
. We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. P. Albano, P. Cannarsa, K. T. Nguyen and C. Sinestrari, Singular gradient flow of the distance function and homotopy equivalence, Math. Ann., 356 (2013), 23–43.
2. Systems & Control: Foundations & Applications;M. Bardi,1997
3. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer, Paris, 1994.
4. M. Berger, A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003.
5. P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Supér., 40 (2007), 445–452.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献