On the singularities of distance functions in Hilbert spaces

Author:

Strömberg ThomasORCID

Abstract

AbstractFor a given closed nonempty subset E of a Hilbert space H, the singular set $$\Sigma _E$$ Σ E consists of the points in $$H\setminus E$$ H \ E where the distance function $$d_E$$ d E is not Fréchet differentiable. It is known that $$\Sigma _E$$ Σ E is a weak deformation retract of the open set $$\mathcal {G}_E=\{x\in H: d_{\overline{{\text {co}}}\,E}(x)< d_E(x)\}$$ G E = { x H : d co ¯ E ( x ) < d E ( x ) } . This short paper sheds light on the relationship between the connected components of the three sets $$\Sigma _E\subset \mathcal {G}_E\subseteq H{\setminus } E$$ Σ E G E H \ E .

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. Albano, P., Cannarsa, P., Nguyen, K., Sinestrari, C.: Singular gradient flow of the distance function and homotopy equivalence. Math. Ann. 356, 23–43 (2013)

2. Asplund, E.: Fréchet differentiability of convex functions. Acta Math. 121, 31–47 (1968)

3. Asplund, E.: Čebyšev sets in Hilbert space. Trans. Amer. Math. Soc. 144, 235–240 (1969)

4. Blum, H.: A transformation for extracting new descriptors of shape. In: Whaten-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

5. Cannarsa, P., Cheng, W.: Generalized characteristics and Lax–Oleinik operators: global theory. Calc. Var. Partial Differential Equations 56, Paper No. 125, 31 pp. (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3