Abstract
AbstractFor a given closed nonempty subset E of a Hilbert space H, the singular set $$\Sigma _E$$
Σ
E
consists of the points in $$H\setminus E$$
H
\
E
where the distance function $$d_E$$
d
E
is not Fréchet differentiable. It is known that $$\Sigma _E$$
Σ
E
is a weak deformation retract of the open set $$\mathcal {G}_E=\{x\in H: d_{\overline{{\text {co}}}\,E}(x)< d_E(x)\}$$
G
E
=
{
x
∈
H
:
d
co
¯
E
(
x
)
<
d
E
(
x
)
}
. This short paper sheds light on the relationship between the connected components of the three sets $$\Sigma _E\subset \mathcal {G}_E\subseteq H{\setminus } E$$
Σ
E
⊂
G
E
⊆
H
\
E
.
Funder
Lulea University of Technology
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Albano, P., Cannarsa, P., Nguyen, K., Sinestrari, C.: Singular gradient flow of the distance function and homotopy equivalence. Math. Ann. 356, 23–43 (2013)
2. Asplund, E.: Fréchet differentiability of convex functions. Acta Math. 121, 31–47 (1968)
3. Asplund, E.: Čebyšev sets in Hilbert space. Trans. Amer. Math. Soc. 144, 235–240 (1969)
4. Blum, H.: A transformation for extracting new descriptors of shape. In: Whaten-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)
5. Cannarsa, P., Cheng, W.: Generalized characteristics and Lax–Oleinik operators: global theory. Calc. Var. Partial Differential Equations 56, Paper No. 125, 31 pp. (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献