1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
2. Ariki, Y., Kubota, S., Kumano, M.: Automatic production system of soccer sports video by digital camera work based on situation recognition. In: Eighth IEEE International Symposium on Multimedia (ISM’06), pp. 851–860. IEEE (2006)
3. Bialkowski, A., Lucey, P., Carr, P., Denman, S., Matthews, I., Sridharan, S.: Recognising team activities from noisy data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 984–990 (2013)
4. Cantine, J., et al.: Shot by shot: a practical guide to filmmaking. In: ERIC (1995)
5. Carr, P., Mistry, M., Matthews, I.: Hybrid robotic/virtual pan-tilt-zom cameras for autonomous event recording. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 193–202 (2013)