PlayNet: real-time handball play classification with Kalman embeddings and neural networks

Author:

Mures Omar A.ORCID,Taibo JavierORCID,Padrón Emilio J.ORCID,Iglesias-Guitian Jose A.ORCID

Abstract

AbstractReal-time play recognition and classification algorithms are crucial for automating video production and live broadcasts of sporting events. However, current methods relying on human pose estimation and deep neural networks introduce high latency on commodity hardware, limiting their usability in low-cost real-time applications. We present PlayNet, a novel approach to real-time handball play classification. Our method is based on Kalman embeddings, a new low-dimensional representation for game states that enables efficient operation on commodity hardware and customized camera layouts. Firstly, we leverage Kalman filtering to detect and track the main agents in the playing field, allowing us to represent them in a single normalized coordinate space. Secondly, we utilize a neural network trained in nonlinear dimensionality reduction through fuzzy topological data structure analysis. As a result, PlayNet achieves real-time play classification with under 55 ms of latency on commodity hardware, making it a promising addition to automated live broadcasting and game analysis pipelines.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Xunta de Galicia

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3