ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://link.springer.com/content/pdf/10.1007/s00138-020-01098-x.pdf
Reference40 articles.
1. Abdel-Qader, I., Abudayyeh, O., Kelly, M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civ. Eng. 17(4), 255–263 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
3. Bang, S., Park, S., Kim, H., Kim, H.: Encoder–decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civ. Infrastruct. Eng. 34(8), 713–727 (2019)
4. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. arXiv:1206.5533 [cs] (2012)
5. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017). https://doi.org/10.1111/mice.12263
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Segment anything model-based crack segmentation using low-rank adaption fine-tuning;Structural Health Monitoring;2024-07-25
2. A Multi-Stage Feature Aggregation and Structure Awareness Network for Concrete Bridge Crack Detection;Sensors;2024-02-28
3. CSegNet:A Crack Segmentation Network Combining CNN and Transformer;2024-02-20
4. Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends;Sensors;2023-10-30
5. Deep Learning based Pavement Crack Detection System;Journal of Physics: Conference Series;2023-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3