Epibenthic megafauna communities in Northeast Greenland vary across coastal, continental shelf and slope habitats

Author:

Fredriksen Rosalyn,Christiansen Jørgen S.,Bonsdorff Erik,Larsen Lars-Henrik,Nordström Marie C.,Zhulay Irina,Bluhm Bodil A.ORCID

Abstract

AbstractThe marine area of Northeast Greenland belongs to the largest national park in the world. Biodiversity assessments and tailored conservation measures often target specific physiographic or oceanographic features of an area for which detailed knowledge on their biological communities is incomplete. This study, therefore, characterizes epibenthic megafauna communities in a priori defined seabed habitats (fjord, shelf, shelf break and slope) and their relationship to environmental conditions in Northeast Greenland waters as a basis for conservation and management planning. Megabenthos was sampled from the Bessel Fjord across the shelf to the upper continental slope between latitudes 74.55°N–79.27°N and longitudes 5.22°W–21.72°W by Campelen and Agassiz trawls at 18 locations (total of 33 samples) at depths between 65 and 1011 m in August 2015 and September 2017. A total of 276 taxa were identified. Gross estimates of abundance ranged from 4 to 854 individuals 1000 m−2 and biomass ranged from 65 to 528 g wet weight 1000 m−2 (2017 only). The phyla Arthropoda and Porifera contributed the most to taxon richness, while Mollusca and Echinodermata were the most abundant, and Echinodermata had the highest biomass of all phyla. Fjord, shelf, shelf break and slope seabed habitats revealed different megafaunal communities that were partly explained by gradients in depth, bottom oxygen concentration, temperature, salinity, and turbidity. The present study provides a current baseline of megabenthos across seabed habitats in Northeast Greenlandic waters and reveals putative connections between Arctic and Atlantic biota.

Funder

UiT The Arctic University of Norway

Stiftelsen för Åbo Akademi

UiT - The Arctic University of Norway

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3