Dynamical Modelling of the Global Cement Production and Supply System, Assessing Climate Impacts of Different Future Scenarios

Author:

Sverdrup Harald UlrikORCID,Olafsdottir Anna Hulda

Abstract

Abstract The global cement and concrete demand, production, supply, and the general global market price was modelled using the WORLD7 model for different future scenarios. The model was used to analyze some possible measures to reduce the climate impact of cement production. The main result from this study is that three factors may bring regulatory limitations to be imposed on cement production. The contribution of CO2 to the atmosphere, the amount of iron used in construction and the use of energy in production are the main factors that may cause limitations. Cement accounts for about 8% of the global CO2 emissions and energy use at present, and this fraction is projected by the simulations to continue to increase. To reduce CO2 emissions from cement production, ending fossil fuel use for calcination, combined with a change towards using mortar as an alternative for making concrete should be considered. Our conclusion is that the long-term limitation for cement production is the availability of carbon-free energy, and the availability of iron for reinforcement bars. Eliminating the use of hydrocarbons for cement calcination may reduce the future the contribution from cement by 38%. Eliminating the use of hydrocarbons for calcination combined with substituting cement with mortar to 50%, the contribution to the future global average temperature increase is reduced by 62%. Eliminating the use of hydrocarbons for calcination combined with substituting cement with mortar to 90% is a reduction by 90% in the contribution from cement.

Funder

Høgskolen i Innlandet

Horizon 2020 Framework Programme

Inland Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3