Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies

Author:

Khalid Muhammad Fasih,Huda Samsul,Yong Miingtiem,Li Lihua,Li Li,Chen Zhong-Hua,Ahmed TalaatORCID

Abstract

AbstractIn recent decades, the demand for vegetables has increased significantly due to the blooming global population. Climate change has affected vegetable production by increasing the frequencies and severity of abiotic and biotic stresses. Among the abiotic stresses, drought and salinity are the major issues that possess severe threats on vegetable production. Many vegetables (e.g., carrot, tomato, okra, pea, eggplant, lettuce, potato) are usually sensitive to drought and salt stress. The defence mechanisms of plants against salt and drought stress have been extensively studied in model plant species and field crops. Better understanding of the mechanisms of susceptibility of vegetables to drought and salt stresses will help towards the development of more tolerant genotypes as a long-term strategy against these stresses. However, the intensity of the challenges also warrants more immediate approaches to mitigate these stresses and enhance vegetable production in the short term. Therefore, this review enlightens the updated knowledge of responses (physiological and molecular) against drought and salinity in vegetables and potentially effective strategies to enhance production. Moreover, we summarized different technologies such as seed priming, genetic transformation, biostimulants, nanotechnology, and cultural practices adopted to enhance vegetable production under drought and salinity stress. We propose that approaches of conventional breeding, genetic engineering, and crop management should be combined to generate drought and salt resistance cultivars and adopt smart cultivation practices for sustainable vegetable production in a changing climate.

Funder

Qatar National Research Fund

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3