Abstract
Abstract
Pectin-rich residues are considered as promising feedstocks for sustainable production of platform chemicals. Enzymatic hydrolysis of extracted sugar beet press pulp (SBPP) releases the main constituent of pectin, d-galacturonic acid (d-GalA). Using engineered Saccharomyces cerevisiae, d-GalA is then reduced to l-galactonate (l-GalOA) with sorbitol as co-substrate. The current work addresses the combination of enzymatic hydrolysis of pectin in SBPP with a consecutive optimized biotransformation of the released d-GalA to l-GalOA in simple batch processes in stirred-tank bioreactors. Process conditions were first identified with synthetic media, where a product concentration of 9.9 g L-1 L-GalOA was obtained with a product selectivity of 99% (L-GalOA D-GalA-1) at pH 5 with 4% (w/v) sorbitol within 48 h. A very similar batch process performance with a product selectivity of 97% was achieved with potassium citrate buffered SBPP hydrolysate, demonstrating for the first time direct production of L-GalOA from hydrolyzed biomass using engineered S. cerevisiae. Combining the hydrolysis process of extracted SBPP and the biotransformation process with engineered S. cerevisiae paves the way towards repurposing pectin-rich residues as substrates for value-added chemicals.
Key points
• Efficient bioreduction of D-GalA with S. cerevisiae in stirred-tank reactors
• Batch production of L-GalOA by engineered S. cerevisiae with high selectivity
• Direct L-GalOA production from hydrolyzed sugar beet press pulp
Graphical abstract
Funder
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献