D-Galacturonic acid reduction by S. cerevisiae for L-galactonate production from extracted sugar beet press pulp hydrolysate

Author:

Wagner J.ORCID,Schäfer D.,von den Eichen N.,Haimerl C.,Harth S.,Oreb M.,Benz J. P.,Weuster-Botz D.

Abstract

Abstract Pectin-rich residues are considered as promising feedstocks for sustainable production of platform chemicals. Enzymatic hydrolysis of extracted sugar beet press pulp (SBPP) releases the main constituent of pectin, d-galacturonic acid (d-GalA). Using engineered Saccharomyces cerevisiae, d-GalA is then reduced to l-galactonate (l-GalOA) with sorbitol as co-substrate. The current work addresses the combination of enzymatic hydrolysis of pectin in SBPP with a consecutive optimized biotransformation of the released d-GalA to l-GalOA in simple batch processes in stirred-tank bioreactors. Process conditions were first identified with synthetic media, where a product concentration of 9.9 g L-1 L-GalOA was obtained with a product selectivity of 99% (L-GalOA D-GalA-1) at pH 5 with 4% (w/v) sorbitol within 48 h. A very similar batch process performance with a product selectivity of 97% was achieved with potassium citrate buffered SBPP hydrolysate, demonstrating for the first time direct production of L-GalOA from hydrolyzed biomass using engineered S. cerevisiae. Combining the hydrolysis process of extracted SBPP and the biotransformation process with engineered S. cerevisiae paves the way towards repurposing pectin-rich residues as substrates for value-added chemicals. Key points Efficient bioreduction of D-GalA with S. cerevisiae in stirred-tank reactors Batch production of L-GalOA by engineered S. cerevisiae with high selectivity Direct L-GalOA production from hydrolyzed sugar beet press pulp Graphical abstract

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3