Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes

Author:

Kim In Jung,Brack Yannik,Bayer Thomas,Bornscheuer Uwe T.ORCID

Abstract

Abstractα-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis.Key pointsTwo novel α-dioxygenases from Cyanobacteria are reportedBoth enzymes prefer medium-chain fatty acidsBoth enzymes are useful for fatty aldehyde biosynthesis Graphical abstract

Funder

Fachagentur Nachwachsende Rohstoffe

Innovative Research Group Project of the National Natural Science Foundation of China

FWF

Universität Greifswald

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules;Journal of Biotechnology;2024-06

2. Biocatalytic Production of Odor-Active Fatty Aldehydes from Fungal Lipids;Journal of Agricultural and Food Chemistry;2023-05-17

3. Enzymatic reactions towards aldehydes: An overview;Flavour and Fragrance Journal;2023-04-10

4. An enzymatic tandem reaction to produce odor-active fatty aldehydes;Applied Microbiology and Biotechnology;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3