MSC secreted extracellular vesicles carrying TGF-beta upregulate Smad 6 expression and promote the regrowth of neurons in spinal cord injured rats
-
Published:2021-08-27
Issue:
Volume:
Page:
-
ISSN:2629-3269
-
Container-title:Stem Cell Reviews and Reports
-
language:en
-
Short-container-title:Stem Cell Rev and Rep
Author:
Han Tianyu, Song Peiwen, Wu Zuomeng, Xiang Xia, Liu Yunlei, Wang Ying, Fang Huang, Niu Yang, Shen CailiangORCID
Abstract
AbstractMesenchymal stem cells (MSCs) constitute a promising therapy for spinal cord injury (SCI) because they can provide a favorable environment for the regrowth of neurons by inhibiting receptor-regulated Smads (R-Smads) expression in endogenous neural stem cells (NSCs). However, their mechanism of action and effect on the expression of inhibitory Smads (I-Smads) remain unclear. Herein, we demonstrated that extracellular vesicles (EVs) from MSCs were able to upregulate the Smad 6 expression by carrying TGF-β, and the Smad 6 knockdown in NSCs partially weakened the bone marrow MSC (BMSC)-EV-induced effect on neural differentiation. We found that the expression of Smad 6 did not reduced owing to the TGF-β type I receptor kinase inhibitor, SB 431,542, treatment in the acute phase of injury in rats with SCI, thereby indicating that the Smad 6 expression was not only mediated by TGF-β, but also by the inflammatory factors and bone morphogenetic proteins (BMPs) as well. However, in the later phase of SCI, the Smad 6 expression decreased by the addition of SB 431,542, suggesting that TGF-β plays a key role in the mediation of Smad 6 expression in this phase. In addition, immunohistochemistry staining; hematoxylin–eosin staining; and the Basso, Beattie, and Bresnahan (BBB) scores revealed that the early inhibition of TGF-β did not increase neuron regrowth. However, this inhibition increased the cavity and the caspase-3 expression at 24 h post-injury, leading to a worse functional outcome. Conversely, the later treatment with the TGF-β inhibitor promoted the regrowth of neurons around the cavity, resulting in a better neurological outcome. Together, these results indicate that Smad 6 acts as a feedback regulator to prevent the over-differentiation of NSCs to astrocytes and that BMSC-EVs can upregulate Smad 6 expression by carrying TGF-β.
Graphical abstract
Funder
National Natural Science Foundation of China Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. O’Shea, T. M., Burda, J. E., & Sofroniew, M. V. (2017). Cell biology of spinal cord injury and repair. The Journal of Clinical Investigation, 127(9), 3259–3270. 2. Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R., & Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 20(5), 637–647. 3. Stenudd, M., Sabelstrom, H., & Frisen, J. (2015). Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurology, 72(2), 235–237. 4. Wang, Y., Cheng, X., He, Q., Zheng, Y., Kim, D. H., Whittemore, S. R., & Cao, Q. L. (2011). Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. Journal of Neuroscience, 31(16), 6053–6058. 5. Sandner, B., Rivera, F. J., Caioni, M., Nicholson, L., Eckstein, V., Bogdahn, U., Aigner, L., Blesch, A., & Weidner, N. (2013). Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord. Stem Cell Res, 11(2), 758–771.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|