Author:
Ghaly M.,Metwally S. S.,El-Sherief E. A.,Saad E. A.,Abdel Rahman R. O.
Abstract
AbstractThe feasibility of using nano-cryptomelane for elimination of cobalt and cesium metal ions from their single and binary solutions was studied. In this respect, the material was prepared and characterized to confirm its chemical composition and structure. Results illustrate that the synthesized nano-cryptomelane has a tunnel structure with particle size ranged between 4 and 6 nm. The material feasibility was detected by conducting a series of batch experiments for determination of the kinetic and equilibrium performance of the removal process. All characteristic Raman bands for Mn–O lattice vibrations within the (2 × 2) tunnel structure of MnO6 octahedral are observed which confirm formation of nano-cryptomelane. The specific surface area (SSA) for nano-cryptomelane was calculated and equal to 299.03 m2/g while the surface fractal information (Ds) was2.53. The process sensitivity to changes of H+ concentration is attributed to changes in structural elements-species distribution at the solid/aqueous interface. The pH optimum value was desired at pH 5 for exchange of Cs+ and/or Co2+ with K+ ions. The equilibrium studies show that Langmuir isotherm model was more fitted to the experimental data than that of Freundlich model.
Funder
Egyptian Atomic Energy Authority
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Spectroscopy,Pollution,Radiology, Nuclear Medicine and imaging,Nuclear Energy and Engineering,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献