Abstract
AbstractDue to its favorable decay properties, the non-standard radionuclide 45Ti is a promising PET isotope for tumor imaging. Additionally, titanium complexes are widely used as anti-tumor agents and 45Ti could be used to study their in vivo distribution and metabolic fate. However, although 45Ti can be obtained using the 45Sc(p,n)45Ti nuclear reaction its facile production is offset by the high oxophilicity and hydrolytic instability of Ti4+ ions in aqueous solutions, which complicate recovery from the irradiated Sc matrix. Most available 45Ti recovery procedures rely on ion exchange chromatography or solvent extraction techniques which are time-consuming, produce large final elution volumes, or, in case of solvent extraction, cannot easily be automated. Thus a more widespread application of 45Ti for PET imaging has been hampered. Here, we describe a novel, solvent-free approach for recovery of 45Ti that involves formation of [45Ti]TiCl4 by heating of an irradiated Sc target in a gas stream of chlorine, followed by thermochromatographic separation of the volatile radiometal chloride from co-produced scandium chloride and trapping of [45Ti]TiCl4 in a glass vial at − 78 °C. The recovery of 45Ti amounted to 76 ± 5% (n = 5) and the radionuclidic purity was determined to be > 99%. After trapping, the [45Ti]TiCl4 could be directly used for 45Ti-radiolabeling, as demonstrated by the successful radiosynthesis of [45Ti][Ti(2,4-salan)].
Funder
Forschungszentrum Jülich GmbH
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Spectroscopy,Pollution,Radiology Nuclear Medicine and imaging,Nuclear Energy and Engineering,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献