Release of 3H and 14C during sampling and speciation in activated concrete

Author:

Leskinen AnumaijaORCID,Hokkinen Jouni,Kärkelä Teemu,Kekki Tommi

Abstract

AbstractCharacterisation of contaminated and activated decommissioning waste require sampling of the studied material for the analysis of different radionuclides. The volatility of 3H and 14C can lead to the loss of the analytes in sampling of solid materials since most often at least some heat is involved in the sampling technique. Especially 3H can be lost in cases when it is present as tritiated water (HTO) due to the evaporation of water even at low temperatures. Therefore, in this study, the 3H and 14C speciations are discussed. Consequently, a drilling sampling technique was developed in order to capture the released 3H and 14C in absorption solutions and measured using liquid scintillation counting. The sampling technique was tested on an activated concrete core. The collected samples were analysed for 3H and 14C (activity concentration and speciation) using a thermal oxidation technique. The results showed that a significant amount of 3H was released during sampling even though the majority of 3H was strongly bound in the activated concrete. The studied activated concrete did not contain measurable amount of 14C and therefore speciation studies were not possible.

Funder

Ydinjätehuoltorahasto

Technical Research Centre of Finland

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Spectroscopy,Pollution,Radiology, Nuclear Medicine and imaging,Nuclear Energy and Engineering,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3