1. B. Bagchi, Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, PhD thesis, Indian Statistical Institute, Kolkata, 1981.
2. H. Bohr, Über das Verhalten von ζ(s) in der Halbebeneσ > 1, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1911: 409–428, 1911.
3. H. Bohr and R. Courant, Neue Anwendungen der Theorie der DiophantischenApproximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math., 144:249–274, 1914.
4. R. Garunkštis, The effective universality theorem for the Riemann zeta function, in D.R. Heath-Brown and B.Z. Moroz (Eds.), Proceedings of the Session in Analytic Number Theory and Diophantine Equations held in Bonn, Germany, January–June, 2002, Bonn. Math. Schr., Vol. 360, Mathematisches Institut der Universität Bonn, Bonn, 2003, p. 21.
5. R. Garunkštis, On the Voronin’s universality theorem for the Riemann zeta-function, Fiz. Mat. Fak. Moksl. Semin. Darb., 6:29–33, 2003.