1. Voronin S. M., “Theorem on the ‘universality’ of the Riemann zeta-function,” Math. USSR-Izv., vol. 9, no. 3, 443–453 (1975).
2. Matsumoto K., “A survey on the theory of universality for zeta and $ L $-functions,” in: Number Theory. Plowing and Starring Through High Wave Forms. Proc. of 7th China–Japan Seminar, 2013, M. Kaneko et al. (eds.), World Sci., Hackensack (2015), 95–144 (Ser. Number Theory Appl.; Vol. 11).
3. Selberg A., “Old and new conjectures and results about a class of Dirichlet series,” in: Proc. of the Amalfi Conf. on Analytic Number Theory, Held at Maiori, Amalfi, Italy, 25–29 September, 1989. E. Bombieri et al. (eds.), University di Salerno, Salerno (1992), 367–385.
4. Steuding J., Value-Distribution of $ L $-Functions, Springer, Berlin etc. (2007) (Lecture Notes Math.; Vol. 1877).
5. Nagoshi H. and Steuding J., “Universality for $ L $-functions in the Selberg class,” Lith. Math. J., vol. 50, no. 3, 293–311 (2010).