Author:
Barczy Mátyás,Nedényi Fanni K.,Pap Gyula
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley Ser. Probab. Math. Stat., John Wiley & Sons, New York, Chichester, Brisbane, 1980.
2. M. Barczy, Zs. Bősze, and G. Pap, On tail behaviour of stationary second-order Galton–Watson processes with immigration, 2018, arXiv:1801.07931.
3. M. Barczy, F. K. Nedényi, and G. Pap, On aggregation of multitype Galton–Watson branching processes with immigration, Mod. Stoch., Theory Appl., 5(1):53–79, 2018, available from: https://doi.org/10.15559/18-vmsta95.
4. M. Barczy, F. K. Nedényi, and G. Pap, On aggregation of subcritical Galton–Watson branching processes with regularly varying immigration, 2019, arXiv:1906.00373.
5. M. Barczy, F. Nedényi, and G. Pap, Iterated limits for aggregation of randomized INAR(1) processes with Poisson innovations, J. Math. Anal. Appl., 451(1):524–543, 2017, available from: https://doi.org/10.1016/j.jmaa.2017.02.031.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献