Generalized Linear Mixed Effects Modeling (GLMM) of Functional Analysis Graphical Construction Elements on Visual Analysis

Author:

Dowdy ArtORCID,Prime Kasey,Peltier CoreyORCID

Abstract

AbstractMultielement designs are the quintessential design tactic to evaluate outcomes of a functional analysis in applied behavior analysis. Protecting the credibility of the data collection, graphing, and visual analysis processes from a functional analysis increases the likelihood that optimal intervention decisions are made for individuals. Time-series graphs and visual analysis are the most prevalent method used to interpret functional analysis data. The current project included two principal aims. First, we tested whether the graphical construction manipulation of the x-to-y axes ratio (i.e., data points per x- axis to y-axis ratio [DPPXYR]) influenced visual analyst’s detection of a function on 32 multielement design graphs displaying functional analyses. Second, we investigated the alignment between board certified behavior analysts (BCBAs; N = 59) visual analysis with the modified visual inspection criteria (Roane et al., Journal of Applied Behavior Analysis, 46, 130-146, 2013). We found that the crossed GLMM that included random slopes, random intercepts, and did not include an interaction effect (AIC = 1406.1, BIC = 1478.2) performed optimally. Second, alignment between BCBAs decisions and the MVI appeared to be low across data sets. We also leveraged current best practices in Open Science for raw data and analysis transparency.

Publisher

Springer Science and Business Media LLC

Reference64 articles.

1. Bailey, D. B. (1984). Effects of lines of progress and semilogarithmic charts on ratings of charted data. Journal of Applied Behavior Analysis, 17(3), 359–365. https://doi.org/10.1901/jaba.1984.17-359

2. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

3. Bates, D., Mächler, M., Bolker, B., Walker, S., Christensen, R., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., & Green, P. (2022). Package ‘lme4’ (Version 1.1-26) [Computer software]. Comprehensive R Archive Network. https://cran.r-project.org/web/packages/lme4/lme4.pdf

4. Beavers, G. A., Iwata, B. A., & Lerman, D. C. (2013). Thirty years of research on the functional analysis of problem behavior. Journal of Applied Behavior Analysis, 46(1), 1–21. https://doi.org/10.1002/jaba.30

5. Behavior Analyst Certification Board. (2017). BCBA task list (5th ed.). Retrieved from https://www.bacb.com/wpcontent/uploads/2020/08/BCBA-task-list-5th-ed-230130-a.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3